Эффективность детектирования различных типов морских сликов по соосно-поляризационным данным PCA Radarsat-2 и TerraSAR-X

Ивонин Д.В.¹, Иванов А.Ю.¹, Skrunes S.², Brekke C.²

¹ Институт океанологии им. П.П. Ширшова РАН, Россия ² Университет г. Тромсё - Арктический университет, Тромсё, Норвегия ivonin@ocean.ru

Брегговское

 $k_{\rm h} = 2k_{\rm r}\sin\theta$,

зондирования

heta - угол

 $k_r = 2\pi / \lambda_r$

 λ_r - длина

UIT / THE ARCTIC UNIVERSIT

ПРОЦЕДУРА АВТОМАТИЧЕСКОЙ ОБРАБОТКИ ДАННЫХ:

- (a, g) исходные данные, (b) осреднение данных,
- (c, h) выделение брегговской и нерезонансной частей, вычитание фона шума,
- (d) автоматическое определение уровня сигнала в чистой воде,
- (е) построение двумерного распределения сигнала в координатах брегговской и нерезонансной частей,

(f, i) – вычиление одномерного распределения RND, и RND_{mean} и RND_{std}

- Создание автоматического метода детектирования ЦЕЛЬ: типа пленки (нефтяных, биогенных, и др.)
 - Работа метода одновременно в С- или Х-диапазонах (Radarsat-2 или TerraSAR-X данные)

• Возможность работать с зашумленными данными.

данные RadarSat-2 данные TerraSAR-X

РЕЗУЛЬТАТЫ обработки 14 сликов по поляризационным данным PCA TerraSAR-X и RadarSat-2

спутников TerraSAR-X и RadarSat-2, полученные 1) Данные разных Β радиодиапазонах (соответственно, в Х- и С-диапазонах) и разных углах зондирования для пленок нефти, либо ее эмульсий, в терминах параметра RND кучно располагаются в одной области (см. Рисунок выше) в диапазоне волновых чисел Брегга от 115 до 270 рад/м.

2) В терминах параметров RND_{mean} и RND_{std} (Ivonin et al., 2016, 2017) поляризационные данные спутников TerraSAR-X и RadarSat-2 позволяют с вероятностью >80% (см. Таблицу) разделять друг от друга слики, соответствующие естественным выходам нефти, биогенным пленкам и нефтяных пятен.

ДАННЫЕ спутников RadarSat-2 и TerraSAR-X собраны в Северном море с контролируемыми разливами сырой нефти, нефтяной эмульсии и растительного масла (Skrunes et al., 2014, 2015).

ПОЛЯРИЗАЦИОННЫЙ МЕТОД (см. Ivonin et al., 2016): Основан на полуэмпирической модели УЭПР, предложенной в работе (Kudryavtsev et al., 2003), которая принимает во внимание рассеяние от обрушений волн. Метод построен на вычислении количественных характеристик для соотношения подавления или увеличения сигналов различной физической природы: вызванных капиллярной рябью длиной несколько сантиметров или обрушениями волн. Для этого был введен поляризационный параметр RND (от англ. relative Resonant to Nonresonant signal Damping).

Нормализация сигнала

3) Шум снимков TerraSAR-X и RadarSat-2 не является существенным препятствием для работы метода

(Тип слика, обозначение)	Возраст, содержан ие воды % ^а	Размеры пикселя (Rg × Az), осреднение (Rg × Az)	Угол зондирова ния	Мощность сигнала в слике ^ь min(V), min(H), NESZ (dB)	Мощность сингала в слике ^ь min(B), min(n), (sp) (dB)	Контраст слик / вода ^ь B, n, (dB)	SNR _n (dB)	RND (mean ± std)	Вероятность быть нефтяной пленкой	Вероятность быть биогенной пленкой
pl	ant oil (RSb_P)	~13 h	4.7 × 4.8 m	35.34°	-22.2 -23.4 -35.2	-26.9 -24.1 -94 (-70)	-8.4 -4.5	11.1	0.75 ± 0.04	11.41	88.58
	emulsion (RSb_E)	~29 h, 69%		35.55°	-23.3 -25.1 -34.9	-26.7 -26.1 -96 (-71)	-7.5 -5.6	8.8	0.87 ± 0.04	86.22	2.04
	crude oil (RSb_C)	~9 h		35.93°	-27.5 -28.2 -33.9	-29.9 -28.6 -99 (-74)	-10.5 -7.5	5.3	0.83 ± 0.03	84.02	15.87
pl	ant oil (RSd_P)	~14 h	4.7 × 5.6 m	30.87°	-22.7 -24.0 -35.2	-26.8 -25.3 -62 (-45)	-7.0 -4.0	9.9	0.71 ± 0.05	1.53	98.47
emu	Ilsion 4 (RSd_ E4)	~22 h, 58%		31.10°	-25.0 -26.0 -35.5	-29.8 -26.9 -64 (-46)	-10.9 -7.4	8.6	0.91 ± 0.02	84.13	0.001
emu	ulsion 5 (RSd_E5)	~17 h, 58%		31.23°	-25.8 -26.9 -35.4	-30.4 -27.7 -65 (-47)	-11.6 -8.3	7.7	0.90 ± 0.03	84.44	0.31
emu	ulsion 6 (RSd_E6)	~14 h, 58%		31.33°	-24.8 -25.9 -35.4	-29.4 -26.7 -65 (-48)	-10.9 -8.0	8.7	0.88 ± 0.03	92.06	1.33
emu	ulsion 2 (RSc_E2)	~28 h, 58%	6.26 × 5.11 m, 175 × 511 m	49.45°	-25.2 -29.1 -31.1	-27.0 -29.9	-6.8 -4.4	1.2	0.79 ± 0.03 (0.77 ± 0.032)	87.69	11.65
emu	ulsion 1 (TSc_E1)	~28 h, 58%	0.9 × 2.3 m, 16 × 16, 13 × 11, 149 × 198 m,	41.22°	-15.7 -18.8 -21.2 -23.2 -23.1	-24.6 -23.8	-7.1 -3.7	-0.7	0.75 ± 0.03	84.09	0.05
emu	ulsion 2 (TSc_E2)			41.48°	-15.7 -18.8 -22.2 -23.7	-26.9 -24.3	-9.2 -4.2	-1.0	0.71 ± 0.04	85.42	7.39

-30.2

-24.6

-31.5

-37.5

-26.0

-33.8

-25.3

-19.1

-12.8

-4.8

-8.4

-5.8

-3.3

-2.2

-8.9

-4.9

-1.5

-4.7

-1.2

7.5

0.69 ± 0.04

0.85 ± 0.054

 (0.80 ± 0.045)

0.78 ± 0.048

 (0.72 ± 0.045)

0.82 ± 0.03

-15.4

-18.6

-23.3

-24.3 -23.1

-30.5

-35.7

-32.8

-25.3

-31.2

-32.6

-12.1

-13.1

-18.6

-19.0 -26.6

полезные ссылки:

- 1. Ивонин Д.В., Иванов А.Ю. О классификации пленочных загрязнений моря на основе обработки поляризационных радиолокационных данных спутника TERRASAR-X // Океанология, 2017. Т. 57. №5. С. 738-750.
- 2. Ivonin D. V, Skrunes, S., Brekke, C., and A. Y. Ivanov, "Interpreting sea surface slicks on the basis of the normalized radar cross-section model using RADARSAT-2 copolarization dual-channel SAR images", Geophysical Research Letters. 2016. 43(6). pp. 2748-2757.
- 3. Skrunes S., Brekke C., Eltoft T., and V. Kurdryavtsev, "Comparing Near Coincident C- and X-band SAR Acquisitions of Marine Oil Spills," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4, pp. 1958-1975, April, 2015.
- 4. Skrunes S., Brekke C., and T. Eltoft, "Characterization of Marine Surface Slicks by Radarsat-2 Multipolarization Features," IEEE Trans. Geosci. Remote Sens., vol. 52, no.9, pp. 5302-5319, September, 2014.
- 5. Kudryavtsev V. N., Hauser D., Caudal G., and B. Chapron, "A semiempirical model of the normalized radar cross-section of the sea surface: 1. Background model", Journal of Geophysical Research: Oceans, vol. 108, no. C3, FET-3, 2003.
- 6. Kudryavtsev V. N., Chapron B., Myasoedov A., Collard F., and J. A. Johannessen, "On Dual Co-Polarized SAR Measurements of the Ocean Surface", Geoscience and Remote Sensing Letters, IEEE, vol. 10. no. 4, pp. 761-765, 2013.

Работа выполнена при поддержке проекта РНФ № 14-50-00095 и Council Research Norway, Of GlobOilRisk проект (BIA грант No. 235444), NORRUSS проект (грант No. 233896) и CIRFA (грант No. 237906).

81.82

66.96

61.55

84.50

15 87

5.71

36.56

0.19

«Современные проблемы дистанционного зондирования Земли из космоса», Москва, 13-17 ноября 2017 г.